ARGENE

Introduction

Respiratory infections are among the most common infections of humans worldwide and are caused by a large number of viral and bacterial agents. The most common Upper and Lower Respiratory Infections (URTI and LRTI) such as rhinitis, pharyngitis, laryngitis, bronchitis, bronchiolitis, and pneumonia can lead to Acute Respiratory Infections (ARI) which account for an estimated 75% of all acute morbidities in industrialized countries and continue to be the leading cause of acute illness worldwide. Populations at increased risk for developing a fatal respiratory distress are infants and young children, immunocompromised persons and the elderly.

Respiratory Multi Well System (MWS) r-gene[™] is a brand new range of real-time PCR complete kits for the simultaneous detection of infectious agents involved in respiratory diseases by multiple detection strategies.

Materials and Methods

Extractions : NucliSENS[®] easyMAGTM extraction (bioMérieux) is validated for a volume of 400µL of sample eluted in 100µL, or 200µL of sample eluted in 50μ L. For both volumes, 50μ L of magnetic silica is used. For nasopharyngeal samples, Proteinase K (Novagen) pre-treatment is performed

Amplifications : 10µL of extracted sample are added to 15µL of readyto-use 71-04x r-gene[™] amplification premix. For RNA targets, reverse transcriptase is added to perform one-step real time PCRs. The same protocol and the same amplification program are used for the 6 kits :

71-040	Influenza A/B r geneTM	Influenza A		
	Innuenza Arb i-gene	Influenza B		
71 0/1	PSV/hMDV/r gonoTM	Respiratory Syncytial Virus A, B		
/ 1-041	KSV/II/VIFV I-gene	human Metapheumovirus		
71-043	AdV/hBoV r-gene™	52 Adenovirus serotypes		
		human Bocavirus 1,2,3,4		
71-044	Chla/Muca phauma r gapaTM	Chlamydophila pneumoniae		
	Chia/Myco pheumo i-gene	Mycoplasma pneumoniae		
71-045	bCoV/bDIV/rappoIM	human Coronavirus 229E, NL63, OC43, HKU1		
	ncov/nprv i-geneim	human Parainfluenza virus 1,2,3,4		
71-046	CELL Control r-gene™	Validation of the presence/abscence of cells		

QCMD 2010 panels, Influenza A and B virus, Adenovirus and Chlamydophila and Mycoplasma pneumoniae were amplified on ABI 7500 Fast (Applied Biosystems) and/or Versant kPCR AD system (Siemens) and/or Dx Real-Time System (Bio-Rad) and/or LC480 (Roche), after NucliSENS[®] easyMAGTM extraction of 200 μ L of sample.

Study on 100 clinical samples : Residual clinical specimens were collected from subjects of all ages with respiratory symptoms presenting to the pediatric ward, the intensive care unit or emergency department of Dijon Hospital (France). Nasal wash/aspirates, broncho-alveolar lavages and tracheal aspirates from January to March 2010 and 2011 winter seasons were tested. 400μ L of samples we reextracted with NucliSENS[®] easy MAGTM and amplified on ABI 7500 Fast. Direct immunofluorescence assay was performed with monoclonal antibody anti RSV FITC (17-042-Argene).

We thank Pr Pothier Pierre and Mr Daval Philippe from the Virology Laboratory of Dijon Hospital for clinical samples.

Results

VTM : Virus Transport Medium STM : Semple Trasnport medium BAL : Human Braonchoalveolar Lavage negative for CP and MP

29 samples out of 32 (91%) of the three panels were in agreement with QCMD expected results whatever the real time PCR platforms used, including low viral and bacterial loads. Only three low positive samples, *Influenza* A at 38 cycles, AdV41 at 113 copies/mL and M. pneumoniae at 50 CCU/100µL, were not detected or only with one platform. No cross reaction was observed.

Respiratory Multi Well System (MWS) r-geneTM : simultaneous detection of infectious agents involved in respiratory diseases Magro S., Resa C., Vignoles M., Bertrand M., Bes J., Berriot A., Dube M., Roques C., Pourque L., Anton C., Barranger C. and Joannes M.

ARGENE, Parc Technologique Delta Sud, 09340 VERNIOLLE, France e-mail: stephane.magro@argene.com

AD 2010 Panel						
			ABI7500Fast (Applied Biosystems)		Versant kPCR AD (Siemens)	
ample contents	Matrix	CT Value (cycles)	Influenza A	Influenza B	Influenza A	Influenza B
uenza virus H3N2	VTM	30	30.1	neg	31.2	neg
enza virus H1N1v	VTM	35	32.0	neg	32.7	neg
uenza virus H1N1	VTM	33	32.8	neg	33.8	neg
uenza A &B Neg	VTM	_	neg	neg	neg	neg
enza virus H1N1v	VTM	35	32.0	neg	32.8	neg
fluenza virus B	VTM	32	neg	31.9	neg	32.7
fluenza virus B	VTM	39	neg	29.4	neg	29.8
enza virus H1N1v	VTM	30	28.5	neg	29.5	neg
uenza virus H1N1	VTM	29	29.3	neg	29.8	neg
uenza A &B Neg	VTM	-	neg	neg	neg	neg
enza virus H1N1v	VTM	38	neg	neg	37.6	neg
uenza virus H3N2	VTM	37	32.6	neg	33.7	neg

		ABI7500Fast (Applied Biosystems)		Versant kPCR AD (Siemens)			
mple contents	Matrix	Sample conc (Copies/mL)	AdV	hBoV	AdV	hBoV	
ADV type 1	VTM	447	34.3	neg	33.7	neg	
ADV type 41	VTM	113	neg	neg	neg	neg	
ADV type 4	VTM	64.121	28.6	neg	28.5	neg	
ADV type 1	VTM	767	33.6	neg	34.4	neg	
ADV type 1	VTM	4.613	26.6	neg	26.5	neg	
ADV type 1	VTM	4.055	32.5	neg	32.4	neg	
NDV Negative	VTM	_	neg	neg	neg	neg	
ADV type 34	VTM	1.225	33.5	neg	33.3	neg	

			Dx Real-Time System (Bio-Rad)		LC480 (Roche)	
nple contents	Matrix	Sample conc	СР	MP	СР	MP
oneumoniae	BAL	0.49 IFU/100µL	37.2	neg	36.0	neg
oneumoniae	STM	4.9 IFU/100µL	29.4	neg	29.8	neg
oneumoniae	STM	0.049 IFU/100µL	36.1	neg	36.1	neg
MP Negative	STM	neg	neg	neg	neg	neg
pneumoniae	STM	50 CCU/100µL	neg	neg	neg	37.5
oneumoniae	STM	4.9 IFU/100µL	29.2	neg	29.5	neg
oneumoniae	BAL	4.9 IFU/100µL	33.3	neg	33.0	neg
pneumoniae	BAL	50 CCU/100µL	neg	37.4	neg	36.5
pneumoniae	STM	500 CCU/100µL	neg	34.6	neg	34.7
pneumoniae	STM	5,000 CCU/100µL	neg	31.5	neg	32.0
pneumoniae	BAL	500 CCU/100µL	neg	34.2	neg	34.5
oneumoniae	STM	0.49 IFU/100µL	32.9	neg	32.8	neg

H1N1v : New variant pandemic H1N1 strain CCU: Color Changing Units IFU: Inclusion Forming Units

Fifty-three percent of the study subjects were male and the main age group was "< 2 years" (72%). The results show 76 positive samples for at least one of the tested pathogens and 24 negative.

53% of the 76 positive samples were mono infections (40), 34% are double infections (26), 12% triple (9) and 1% quadruple (1).

Respiratory Syncytial Virus was the main pathogen detected (28%), followed by human Bocavirus (19%), Adenovirus (15%) and Coronavirus (14%).

Real Time PCR versus Immunofluorescence (on RSV)							
		RSV					
		+	-				
	MWS 71-041 RSV/hMPV r-gene™	+	27	7	34		
		-	1	65	66		
			28	72	100		

92% of results obtained with 71-041RSV real time PCR and Immunofluorescence assays were in agreement. The 8 discrepant samples are 7 RSV positive PCR confirmed as positive in the second intention test, and one negative by PCR, which was detected as *Influenza* B positive (27.3 cycles).

Influenza B 8%

• Influenza A

••••hMPV 6%

hCoV (22%), hBoV (20%) and AdV (17%) were the 3 viruses detected the most in the multiple infections, followed by RSV (16%).

Discussion

Multiparametric diagnosis demonstrates a high rate of respiratory pathogens detection using sensitive molecular-based assays among a large sample of subjects evaluated for respiratory syndromes in a hospital setting.

24 negative samples still remain without causal agent. These samples were not tested for Rhinovirus, Enterovirus or for bacteria such as Bordetella, Legionella pneumophila or Streptococcus pneumoniae, pathogens also involved in respiratory infections and which might be detected by the other Respiratory MWS r-gene[™] real time PCR assays.

Conclusions

Respiratory Multi Well System (MWS) r-gene[™] represents an innovative solution in response to the challenges in respiratory infections. Results presented in this study show the sensitivity, robustness and reliability of MWS r-gene[™] kits.

Their practicability and compatibility with the major extraction and real time PCR platforms allow an immediate integration in most routine diagnostic laboratories.

These PCR assays can assist clinical laboratories in identifying respiratory pathogens infections in hospitalized patients and aid in patient management.